Question 1:

Find the principal value of
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

Answer

$$\text{Let } \sin^{-1}\left(-\frac{1}{2}\right) = y.$$
 Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right).$

We know that the range of the principal value branch of \sin^{-1} is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]_{\text{and sin}} \left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$$

 $\sin^{-1}\left(-\frac{1}{2}\right) is - \frac{\pi}{6}.$ Therefore, the principal value of

Question 2:

Answer

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
. Then, $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

 $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$

$$\left[0,\pi\right]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

 $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \text{ is } \frac{\pi}{6}.$ Therefore, the principal value of

Question 3:

Find the principal value of cosec⁻¹ (2)

Answer

Let $cosec^{-1}(2) = y$. Then,

We know that the range of the principal value branch of \csc^{-1} is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}.$

 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{2}\right)$ is $-\sqrt{3}$.

Therefore, the principal value of

Find the principal value of

 $[0,\pi]$ and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

Therefore, the principal value of

$\csc y = 2 = \csc\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of tan⁻¹ is

 $\cos^{-1}\left(-\frac{1}{2}\right)$

We know that the range of the principal value branch of cos⁻¹ is

Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

 $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

www.ncerthelp.com

$\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

 $\tan^{-1}\left(\sqrt{3}\right)$ is $-\frac{\pi}{3}$.

Therefore, the principal value of

Find the principal value of $\tan^{-1}\left(-\sqrt{3}\right)$

Ouestion 4:

Answer

Let $\tan^{-1}(-\sqrt{3}) = y$. Then, $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right)$.

Ouestion 5:

Answer

Ouestion 6:

Find the principal value of $tan^{-1}(-1)$

Therefore, the principal value of

 $\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$. Let $tan^{-1}(-1) = y$. Then,

We know that the range of the principal value branch of
$$tan^{-1}$$
 is
$$\begin{pmatrix} \pi & \pi \\ and tan \end{pmatrix} = 1$$

 $\tan^{-1}\left(-1\right)$ is $-\frac{\pi}{4}$.

 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$.

Ouestion 7:

Answer

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
. Then, $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of sec⁻¹ is

 $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$

$$[0,\pi] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{2}}$.

 $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$. Therefore, the principal value of

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Answer

www.ncerthelp.com

Let
$$\cot^{-1}\left(\sqrt{3}\right) = y$$
. Then, $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cot^{-1} is $(0,\pi)$ and

 $\cot\left(\frac{\pi}{\epsilon}\right) = \sqrt{3}$.

$$\cot^{-1}\left(\sqrt{3}\right) \text{ is } \frac{\pi}{6}.$$
 Therefore, the principal value of

 $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ Find the principal value of Answer Let $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

$$\sqrt{2}$$
 $\sqrt{2}$ $\sqrt{4}$ $\sqrt{4}$ We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and (3π) 1

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \text{ is } \frac{3\pi}{4}.$$

Find the principal value of
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$$
 Answer

Let $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of cosec⁻¹ is

We know that the range of the principal value branch of
$$\operatorname{cosec}^{-1}$$
 is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.

 $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$. Therefore, the principal value of

Ouestion 11:

$$\tan^{-1}\left(1\right) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$
 Find the value of

Answer

Let
$$\tan^{-1}(1) = x$$
. Then, $\tan x = 1 = \tan \frac{\pi}{4}$.

$$\therefore \tan^{-1}(1) = \frac{\pi}{4}$$

$$\therefore \tan^{-1}\left(1\right) = \frac{\pi}{4}$$

$$\therefore \tan^{-1}(1) = \frac{\pi}{4}$$
Let $\cos^{-1}(-\frac{1}{4}) = v$. Then, $\cos v = -\frac{1}{4} = \frac{1}{4}$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right)$$

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = z$$
. Then, $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = z$$
. 1

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \tan^{-1}\left(1\right) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$
$$= \frac{\pi}{4} + \frac{2\pi}{2} - \frac{\pi}{6}$$

$$=\frac{3\pi+8\pi-2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}$$

Find the value of
$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$

 $\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$ Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.

Let $\cos^{-1}\left(\frac{1}{2}\right) = x$. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

Question 13:

Find the value of if
$$\sin^{-1} x = y$$
, then

(A)
$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Find the value of $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ is equal to

(c)
$$0 < y < \pi$$
 (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer
It is given that
$$\sin^{-1} x = y$$
.

We know that the range of the principal value branch of
$$\sin^{-1}$$
 is Therefore, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

(A)
$$\Pi$$
 (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$ Answer

We know that the range of the principal value branch of \tan^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

∴
$$\tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let $\sec^{-1} (-2) = y$. Then, $\sec y = -2 = -\sec \left(\frac{\pi}{3}\right) = \sec \left(\pi - \frac{\pi}{3}\right) = \sec \frac{2\pi}{3}$.

We know that the range of the principal value branch of
$$\sec^{-1}$$
 is $\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$.

$$\therefore \sec^{-1}\left(-2\right) = \frac{2\pi}{3}$$

Hence,
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

Let $\tan^{-1}\sqrt{3} = x$. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$.

Question 1:

$$3\sin^{-1} x = \sin^{-1} \left(3x - 4x^3\right), \ x \in \left[-\frac{1}{2}, \ \frac{1}{2}\right]$$
Prove

Answer

$$3\sin^{-1} x = \sin^{-1} \left(3x - 4x^3\right), \ x \in \left[-\frac{1}{2}, \ \frac{1}{2}\right]$$

Let $x = \sin \theta$. Then, $\sin^{-1} x = \theta$.

We have,

R.H.S. =
$$\sin^{-1}(3x - 4x^3) = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$$

$$=\sin^{-1}\left(\sin 3\theta\right)$$

$$=3\sin^{-1}x$$

Question 2:

$$3\cos^{-1} x = \cos^{-1} \left(4x^3 - 3x \right), \ x \in \left[\frac{1}{2}, \ 1 \right]$$
Prove

Answer

$$3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left[\frac{1}{2}, 1\right]$$

To prove:

Let
$$x = \cos\theta$$
. Then, $\cos^{-1} x = \theta$.

We have,

$$= \tan^{-1} \frac{11 \times 24}{11 \times 24 - 14}$$

$$= \tan^{-1} \frac{48 + 77}{264 - 14} = \tan^{-1} \frac{125}{250} = \tan^{-1} \frac{1}{2} = \text{R.H.S.}$$

 $= \tan^{-1} \frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \cdot \frac{7}{24}} \qquad \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$

R.H.S. = $\cos^{-1}(4x^3 - 3x)$

 $=3\theta$

Ouestion 3:

Prove

Answer

To prove:

Question 4:

Prove

 $= 3\cos^{-1}x$ = L.H.S.

L.H.S. = $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24}$

 $= \cos^{-1}(\cos 3\theta)$

 $=\cos^{-1}(4\cos^3\theta-3\cos\theta)$

 $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$

 $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$

 $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$

Answer $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$ To prove:

 $\tan^{-1} \frac{\sqrt{1+x^2-1}}{x}, \ x \neq 0$ Answer

Write the function in the simplest form:

$$= \tan^{-1} \frac{1}{\left(\frac{3}{4}\right)} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1} \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \cdot \frac{1}{7}}$$

$$= \tan^{-1} \frac{\left(\frac{28 + 3}{21}\right)}{\left(\frac{21 - 4}{21}\right)}$$

$$= \tan^{-1} \frac{31}{17} = \text{R.H.S.}$$
Ouestion 5:

 $= \tan^{-1} \frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} + \tan^{-1} \frac{1}{7} \qquad \left[2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right]$

L.H.S. = $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$

 $\therefore \tan^{-1} \frac{\sqrt{1 + x^2} - 1}{x} = \tan^{-1} \left(\frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right)$ $= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right)$ $= \tan^{-1} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} \right)$

 $\tan^{-1} \frac{\sqrt{1+x^2}-1}{}$

Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

 $=\tan^{-1}\left(\tan\frac{\theta}{2}\right)=\frac{\theta}{2}=\frac{1}{2}\tan^{-1}x$

Question 6:

Answer

 $\tan^{-1}\frac{1}{\sqrt{x^2-1}}, |x| > 1$

$$\tan^{-1} \frac{1}{\sqrt{x^2 - 1}}, |x| > 1$$

Put $x = \csc \theta \Rightarrow \theta = \csc^{-1} x$

Write the function in the simplest form:

 $\tan^{-1} \frac{1}{\sqrt{r^2 - 1}} = \tan^{-1} \frac{1}{\sqrt{\cos ec^2 \theta - 1}}$ $=\tan^{-1}\left(\frac{1}{\cot\theta}\right)=\tan^{-1}\left(\tan\theta\right)$

$$= \theta = \csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$$

$$\left[\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2} \right]$$
Question 7:

www.ncerthelp.com

 $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$ Answer

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$

 $= \tan^{-1} \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \right) = \tan^{-1} \left(\tan \frac{x}{2} \right)$

Write the function in the simplest form:

 $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \ 0 < x < \pi$ Answer

 $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$

 $= \tan^{-1} \left(\frac{1 - \tan x}{1 + \tan x} \right)$

 $= \tan^{-1}(1) - \tan^{-1}(\tan x)$

 $= \tan^{-1} \left(\frac{1 - \frac{\sin x}{\cos x}}{1 + \frac{\sin x}{\cos x}} \right)$

 $=\frac{\pi}{4}-x$

 $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}}\right)$

 $=\frac{x}{2}$

 $\tan^{-1}\frac{x-y}{1-yy} = \tan^{-1}x - \tan^{-1}y$

www.ncerthelp.com

Ouestion 9:

Write the function in the simplest form:

$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, |x| < a$$

Answer

$$\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}$$

Put
$$x = a \sin \theta \Rightarrow \frac{x}{a} = \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$$

$$\therefore \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}} \right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta} \right)$$

$$= \tan^{-1} \left(\tan \theta \right) = \theta = \sin^{-1} \frac{x}{a}$$

Question 10:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), \ a > 0; \ \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$$

Answer

 $= \tan^{-1} \left| 2 \cos \frac{\pi}{3} \right| = \tan^{-1} \left[2 \times \frac{1}{2} \right]$

www.ncerthelp.com

 $= \tan^{-1} 1 = \frac{\pi}{4}$

$$\sin^{-1}\frac{1}{2} = x \quad \text{Then,}$$

$$\sin x = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right).$$

$$\therefore \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$

$$\therefore \tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6}\right)\right]$$

 $\tan^{-1}\left|2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right|$ Find the value of Answer

 $=3\theta$ $=3\tan^{-1}\frac{x}{a}$

Question 11:

Question 12:

 $\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-3ax^2}\right)$

Put $x = a \tan \theta \Rightarrow \frac{x}{a} = \tan \theta \Rightarrow \theta = \tan^{-1} \frac{x}{a}$

 $= \tan^{-1} \left(\frac{3a^3 \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a^3 \tan^2 \theta} \right)$

 $\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) = \tan^{-1}\left(\frac{3a^2 \cdot a \tan \theta - a^3 \tan^3 \theta}{a^3 - 3a \cdot a^2 \tan^2 \theta}\right)$

$$= \tan^{-1} \left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)$$
$$= \tan^{-1} \left(\tan 3\theta \right)$$
$$= 3\theta$$

Find the value of $\cot(\tan^{-1} a + \cot^{-1} a)$ Answer

=0

 $=\cot\left(\frac{\pi}{2}\right) \qquad \left[\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\right]$

Ouestion 13:

 $\tan \frac{1}{2} \left| \sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right|, |x| < 1, y > 0 \text{ and } xy < 1$ Find the value of

 $\cot(\tan^{-1} a + \cot^{-1} a)$

Answer

Let $x = \tan \theta$. Then, $\theta = \tan^{-1} x$.

Let $y = \tan \Phi$. Then, $\Phi = \tan^{-1} y$.

 $\therefore \cos^{-1} \frac{1 - y^2}{1 + y^2} = \cos^{-1} \left(\frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} \right) = \cos^{-1} \left(\cos 2\phi \right) = 2\phi = 2 \tan^{-1} y$

 $\therefore \tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$

 $= \tan \frac{1}{2} \left[2 \tan^{-1} x + 2 \tan^{-1} y \right]$ $= \tan \left[\tan^{-1} x + \tan^{-1} y \right]$

 $=\frac{x+y}{1-xy}$

Question 14:

$$= \tan\left[\tan^{-1} x + \tan^{-1} y\right]$$

$$= \tan\left[\tan^{-1}\left(\frac{x+y}{1-xy}\right)\right]$$

www.ncerthelp.com

 $\Rightarrow \frac{x}{5} + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1$ Now, let $\sin^{-1}\frac{1}{5} = y$.

Let $\cos^{-1} x = z$. $\therefore \cos^{-1} x = \sin^{-1} \left(\sqrt{1 - x^2} \right)$

 $\Rightarrow x + 2\sqrt{6}\sqrt{1-x^2} = 5$

 $\Rightarrow 2\sqrt{6}\sqrt{1-x^2} = 5-x$

 $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$, then find the value of x.

 $\Rightarrow \sin\left(\sin^{-1}\frac{1}{5}\right)\cos\left(\cos^{-1}x\right) + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1$

 $\lceil \sin(A+B) = \sin A \cos B + \cos A \sin B \rceil$

 $\Rightarrow \frac{1}{5} \times x + \cos\left(\sin^{-1}\frac{1}{5}\right)\sin\left(\cos^{-1}x\right) = 1$

Answer

 $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$

Then, $\sin y = \frac{1}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \frac{2\sqrt{6}}{5} \Rightarrow y = \cos^{-1}\left(\frac{2\sqrt{6}}{5}\right)$. $\therefore \sin^{-1}\frac{1}{5} = \cos^{-1}\left(\frac{2\sqrt{6}}{5}\right)$ Then, $\cos z = x \Rightarrow \sin z = \sqrt{1 - x^2} \Rightarrow z = \sin^{-1}(\sqrt{1 - x^2})$

From (1), (2), and (3) we have: $\frac{x}{5} + \cos\left(\cos^{-1}\frac{2\sqrt{6}}{5}\right) \cdot \sin\left(\sin^{-1}\sqrt{1-x^2}\right) = 1$ $\Rightarrow \frac{x}{5} + \frac{2\sqrt{6}}{5} \cdot \sqrt{1 - x^2} = 1$

...(3)

On squaring both sides, we get:

 $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1\pi}{x+2} = \frac{1}{4}$, then find the value of x.

 $(4)(6)(1-x^2)=25+x^2-10x$

 $\Rightarrow 24 - 24x^2 = 25 + x^2 - 10x$

Hence, the value of x is $\frac{1}{5}$.

 $\Rightarrow 25x^2 - 10x + 1 = 0$

 $\Rightarrow (5x-1)^2 = 0$

 $\Rightarrow (5x-1)=0$

Question 15:

Answer

 $\Rightarrow x = \frac{1}{5}$

 $\int \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$

Find the values of
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
 Answer
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

 $\tan^{-1} \frac{x-1}{x+2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$

 $\Rightarrow \tan^{-1} \left| \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \left(\frac{x-1}{x-2}\right) \left(\frac{x+1}{x+2}\right)} \right| = \frac{\pi}{4}$

 $\Rightarrow \tan^{-1} \left[\frac{x^2 + x - 2 + x^2 - x - 2}{x^2 - 4 - x^2 + 1} \right] = \frac{\pi}{4}$

 $\Rightarrow \tan^{-1} \left[\frac{2x^2 - 4}{-3} \right] = \frac{\pi}{4}$

 $\Rightarrow \frac{4-2x^2}{3} = 1$

 $\Rightarrow 4-2x^2=3$

 $\Rightarrow x = \pm \frac{1}{\sqrt{2}}$

Question 16:

 $\Rightarrow 2x^2 = 4 - 3 = 1$

Hence, the value of x is

 $\Rightarrow \tan \left[\tan^{-1} \frac{4 - 2x^2}{3} \right] = \tan \frac{\pi}{4}$

 $\Rightarrow \tan^{-1} \left| \frac{(x-1)(x+2)+(x+1)(x-2)}{(x+2)(x-2)-(x-1)(x+1)} \right| = \frac{\pi}{4}$

$$\int_{0}^{1} \sin \frac{2\pi}{3}$$

We know that $\sin^{-1}(\sin x) = x$ if $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin^{-1}x$

Here,
$$\frac{2\pi}{3} \notin \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of

www.ncerthelp.com

Here,
$$\frac{2\pi}{3} \notin \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
Now, $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ can be written as:

Now,
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
 can be written as: $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{\pi}{3}\right)$ where $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\therefore \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

Find the values of $\tan^{-1}\!\left(\tan\frac{3\pi}{4}\right)$

Ouestion 17:

 $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$

Here, $\frac{3\pi}{4} \notin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

Now, $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)_{\text{can be written as:}}$

 $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[-\tan\left(\frac{-3\pi}{4}\right)\right] = \tan^{-1}\left[-\tan\left(\pi - \frac{\pi}{4}\right)\right]$

 $= \tan^{-1} \left[-\tan \frac{\pi}{4} \right] = \tan^{-1} \left[\tan \left(-\frac{\pi}{4} \right) \right]$ where $-\frac{\pi}{4} \in \left(\frac{-\pi}{2}, \frac{\pi}{2} \right)$

Answer

 $tan^{-1}x$.

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
 can be written as:

$$\sin \frac{2\pi}{3}$$
 can be written as:

$$\frac{2\pi}{3} \notin \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$

$$\sin^{-1} \left(\sin \frac{2\pi}{3} \right)$$
 can be written as:

$$\therefore \tan^{-1} \left(\tan \frac{3\pi}{4} \right) = \tan^{-1} \left[\tan \left(\frac{-\pi}{4} \right) \right] = \frac{-\pi}{4}$$

Question 18:

Find the values of
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$$
 Answer

Answer
$$\sin^{-1}\frac{3}{5} = x \\ \text{Let} \quad \sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5} \Rightarrow \sec x = \frac{5}{4}.$$

$$\therefore \tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$$

$$\therefore x = \tan^{-1} \frac{3}{4}$$

$$\therefore \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}$$

Now,
$$\cot^{-1}\frac{3}{2} = \tan^{-1}\frac{2}{3}$$
 ...(ii)

Hence,
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$$

 $= \tan \left(\tan^{-1} \frac{9+8}{12-6} \right)$

Question 19:

Hence,
$$\tan \left(\sin^{-1} \frac{3}{5} + \cot \frac{3}{5} \right)$$

= $\tan \left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} \right)$

$$\sin^{-1}\frac{3}{5}$$
 + \tan^{-1}

$$\sin^{-1}\frac{3}{5}$$
 + $\cot^{-1}\frac{3}{5}$

$$\sin^{-1}\frac{3}{5}$$

$$= \tan \left[\tan^{-1} \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \cdot \frac{2}{3}} \right] \qquad \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$$

...(i)

 $\left[\tan^{-1}\frac{1}{x} = \cot^{-1}x\right]$

[Using (i) and (ii)]

$$=\tan\left(\tan^{-1}\frac{17}{6}\right) = \frac{17}{6}$$

$$1-xy$$

Find the values of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to (A) $\frac{7\pi}{6}$ (B) $\frac{5\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

Answer We know that
$$\cos^{-1}(\cos x) = x$$
 if $x \in [0, \pi]$, which is the principal value branch of $\cos^{-1}(\cos x) = x$

we know that
$$\cos^{-1}(\cos x) = x$$
 if $x = x$, which is the principal value branch of $\cos^{-1}x$.

Here, $\frac{7\pi}{6} \notin x \in [0, \pi]$.

Now,
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$
 can be written as: $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi + x\right) = \cos x\right)$

$$= \cos^{-1} \left[\cos \frac{5\pi}{6} \right] \text{ where } \frac{5\pi}{6} \in \left[0, \pi \right]$$

$$\therefore \cos^{-1} \left(\cos \frac{7\pi}{6} \right) = \cos^{-1} \left(\cos \frac{5\pi}{6} \right) = \frac{5\pi}{6}$$

The correct answer is B.

$$\sin\left(\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right)$$
 is equal to

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1

$$\sin^{-1}\left(\frac{-1}{2}\right) = x$$
 $\sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\frac{-\pi}{6}\right)$.

We know that the range of the principal value branch of
$$\frac{\sin^{-1} is \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]}{\text{www.ncerthelp.com}}$$

$$\sin^{-1}\left(\frac{-1}{2}\right) = \frac{-\pi}{6}$$

$$\therefore \sin\left(\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

The correct answer is D.

Ouestion 1:

Find the value of
$$cos^{\text{--}1}\!\left(cos\frac{13\pi}{6}\right)$$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of \cos

Here,
$$\frac{13\pi}{6} \notin [0, \pi]$$
.

Now,
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$
 can be written as:

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi + \frac{\pi}{6}\right)\right] = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right], \text{ where } \frac{\pi}{6} \in [0, \pi].$$

$$\therefore \cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left[\cos\left(\frac{\pi}{6}\right)\right] = \frac{\pi}{6}$$

Question 2:

$$\tan^{-1}\!\left(\tan\frac{7\pi}{6}\right)$$
 Find the value of

Answer

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

Here,
$$\frac{7\pi}{6} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
.

 $\tan^{-l} \left(\tan \frac{7\pi}{6} \right)_{\text{can be written as:}}$

$$= \tan^{-1} \left[-\tan \left(\frac{5\pi}{6} \right) \right] = \tan^{-1} \left[\tan \left(-\frac{5\pi}{6} \right) \right] = \tan^{-1} \left[\tan \left(\pi - \frac{5\pi}{6} \right) \right]$$
$$= \tan^{-1} \left[\tan \left(\frac{\pi}{6} \right) \right], \text{ where } \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\therefore \tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\frac{\pi}{6}\right) = \frac{\pi}{6}$$

 $\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left[\tan\left(2\pi - \frac{5\pi}{6}\right)\right]$

 $=\tan^{-1}\left[\tan\left(\frac{\pi}{6}\right)\right]$, where $\frac{\pi}{6}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

 $\Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$

$$2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$$

Answer

Let $\sin^{-1}\frac{3}{5}=x$. Then, $\sin x=\frac{3}{5}$.

 $\therefore \tan x = \frac{3}{4}$ $\therefore x = \tan^{-1} \frac{3}{4} \Rightarrow \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$

Now, we have:

$$\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$$
 ...(2)

Now, we have:

www.ncerthelp.com

Now, let $\sin^{-1} \frac{3}{5} = y$. Then, $\sin y = \frac{3}{5} \Rightarrow \cos y = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Question 4:

$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

 $\sin^{-1}\frac{8}{17} = \tan^{-1}\frac{8}{15}$

 $\therefore \tan y = \frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$

Answer Let $\sin^{-1}\frac{8}{17} = x$. Then, $\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{290}} = \frac{15}{17}$.

L.H.S. = $2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$

 $= \tan^{-1} \left[\frac{2 \times \frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2} \right]$

 $= \tan^{-1} \frac{24}{7} = \text{R.H.S.}$

 $= \tan^{-1} \left(\frac{\frac{3}{2}}{\frac{16-9}{2}} \right) = \tan^{-1} \left(\frac{3}{2} \times \frac{16}{7} \right)$

 $\[2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \]$

 $\therefore \tan x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$

www.ncerthelp.com

L.H.S. = $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$

 $= \tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$

 $= \tan^{-1} \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}}$

 $= \tan^{-1} \left(\frac{32+45}{60-24} \right)$

 $= \tan^{-1} \frac{77}{36} = \text{R.H.S.}$

 $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Question 5:

Answer

[Using (1) and (2)]

 $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$

$$= \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{5}{12}$$
 [Using (1) and (2)]

$$= \tan^{-1} \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}$$
 [\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}\]

$$= \tan^{-1} \frac{36 + 20}{48 - 15}$$

Let $\cos^{-1} \frac{4}{5} = x$. Then, $\cos x = \frac{4}{5} \Rightarrow \sin x = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$.

Now, let $\cos^{-1} \frac{12}{12} = y$. Then, $\cos y = \frac{12}{12} \Rightarrow \sin y = \frac{5}{12}$.

Let $\cos^{-1} \frac{33}{65} = z$. Then, $\cos z = \frac{33}{65} \Rightarrow \sin z = \frac{56}{65}$.

 $\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$

 $\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$

 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$

Now, we will prove that:

L.H.S. = $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{12}$

 $\therefore \cos^{-1} \frac{12}{12} = \tan^{-1} \frac{5}{12}$...(2)

 $\cos^{-1}\frac{33}{65} = \tan^{-1}\frac{56}{33}$...(3)

 $\therefore \cos^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$

4 12 $= \tan^{-1} \frac{36 + 20}{48 - 15}$ $= \tan^{-1} \frac{56}{33}$ $= \tan^{-1} \frac{56}{33}$ = R.H.S.[by (3)]

$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$

Ouestion 6:

Answer

Let
$$\sin^{-1} \frac{3}{2} = x$$
. Then, $\sin x = \frac{3}{2} \Rightarrow \cos x$

Answer

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x$

Answer

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

$$\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$$

$$\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$$

$$\therefore \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$$
Now let as $\frac{1}{5} = \tan^{-1} \frac{3}{4}$

Now, let
$$\cos^{-1} \frac{12}{13} = y$$
. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$
$$\therefore \cos^{-1} \frac{12}{12} = \tan^{-1} \frac{5}{12}$$

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \cos^{-1} \frac{12}{12} = \tan^{-1} \frac{5}{12}$$

$$= \tan^{-1} \frac{5}{12}$$

Let $\sin^{-1} \frac{56}{65} = z$. Then, $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$.

$$1^{-1}\frac{5}{12}$$

$$n, \cos y = \frac{1}{1}$$

en,
$$\cos y = \frac{1}{2}$$

n,
$$\cos y = \frac{1}{2}$$

$$v = \frac{12}{12}$$

...(3)

$$\left(\frac{16}{25}\right)^2 = \sqrt{\frac{16}{25}}$$

$$=\sqrt{\frac{16}{25}}$$

$$\therefore \sin^{-1} \frac{56}{65} = \tan^{-1} \frac{56}{33}$$

Now, we have:

 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$

Using (1) and (2), we have

www.ncerthelp.com

Using (3)

$$∴ \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$$
 ...(1)
Let $\cos^{-1} \frac{3}{5} = y$. Then, $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$.
∴ $\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$

Let $\sin^{-1} \frac{5}{12} = x$. Then, $\sin x = \frac{5}{12} \Rightarrow \cos x = \frac{12}{12}$.

$$\therefore \tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$$

 $\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$

Question 7:

$$\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

Answer

$$=\sin^{-1}\frac{56}{65} = \text{R.H.S.}$$

Ouestion 7:

$$= \tan^{-1} \frac{56}{33}$$

$$= \sin^{-1} \frac{56}{65} = \text{R.H.S.}$$

$$= \tan^{-1} \frac{26 + 36}{48 - 15}$$

$$= \tan^{-1} \frac{56}{33}$$

$$= \sin^{-1} \frac{56}{65} = \text{R.H.S.}$$

L.H.S. = $\cos^{-1} \frac{12}{12} + \sin^{-1} \frac{3}{5}$

$$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$$
 [Using (1) and (2)]

$$= \tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{12} \cdot \frac{3}{4}}$$
 [\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}\]

$$= \tan^{-1} \frac{20 + 36}{48 - 15}$$

www.ncerthelp.com

 $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$

Question 8:

$$\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

R.H.S. = $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$

 $= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$

 $= \tan^{-1} \left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$

 $= tan^{-1} \left(\frac{15 + 48}{36 - 20} \right)$

 $= \tan^{-1} \frac{63}{16}$

= L.H.S.

Prove Answer

 $\int \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$

Let $x = \tan^2 \theta$. Then, $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$.

www.ncerthelp.com

Answer
Let
$$x = \tan^2 \theta$$
. Then

Question 9:

Prove

 $\therefore \frac{1-x}{1+x} = \frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$

Now, we have:

R.H.S. = $\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}\left(\cos 2\theta\right) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = \text{L.H.S.}$

 $\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x} \right), x \in [0, 1]$

L.H.S. = $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{8}$

 $= \tan^{-1} \left(\frac{7+5}{35-1} \right) + \tan^{-1} \left(\frac{8+3}{24-1} \right)$

 $= \tan^{-1} \frac{12}{24} + \tan^{-1} \frac{11}{22}$

 $= \tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{22}$

 $= \tan^{-1} \left(\frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \times \frac{11}{23}} \right)$

 $= \tan^{-1} \left(\frac{138 + 187}{391 - 66} \right)$

 $=\frac{\pi}{4}$ = R.H.S.

 $= \tan^{-1} \left(\frac{325}{325} \right) = \tan^{-1} 1$

 $= \tan^{-1} \left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}} \right) + \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{3}} \right)$

Ouestion 10:

$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, \ x \in \left(0, \ \frac{\pi}{4}\right)$$

Answer

Consider
$$\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$$
$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2}$$

$$\frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^2}$$
 (by rationalizing)

$$= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x - 1+\sin x}$$

$$-\frac{\sqrt{1+\sin x}}{2}$$

$$\frac{1+\sin x - 1 + \sin x}{\sin^2 x}$$

$$= \frac{2\left(1 + \sqrt{1 - \sin^2 x}\right)}{2\sin x} = \frac{1 + \cos x}{\sin x} = \frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \cot \frac{x}{2}$$

$$\therefore \text{L.H.S.} = \cot^{-1} \left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right) = \cot^{-1} \left(\cot \frac{x}{2} \right) = \frac{x}{2} = \text{R.H.S.}$$

Answer

$$\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, -\frac{1}{\sqrt{2}} \le x \le 1$$
[Hint: putx = cos 2\theta]

L.H.S. = $\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$

 $= \tan^{-1} \left(\frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}} \right)$

 $= \tan^{-1} \left(\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} \right) = \tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right)$

 $= \tan^{-1} \left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2 \theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2 \theta}} \right)$

 $= \tan^{-1} \left(\frac{\sqrt{2} \cos \theta - \sqrt{2} \sin \theta}{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta} \right)$

 $=\frac{\pi}{4}-\theta=\frac{\pi}{4}-\frac{1}{2}\cos^{-1}x=\text{R.H.S.}$

 $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$

 $= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$

Ouestion 12:

Answer

Put
$$x = \cos 2\theta$$
 so that $\theta = \frac{1}{2}\cos^{-1}x$. Then, we have:

 $\left[\tan^{-1} \left(\frac{x - y}{1 + xy} \right) = \tan^{-1} x - \tan^{-1} y \right]$

 $\Rightarrow \frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}$ $\Rightarrow \cos x = \sin x$ \Rightarrow tan x = 1

 $\Rightarrow \tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{-1}\left(2\csc x\right)$ $\left[2\tan^{-1} x = \tan^{-1}\frac{2x}{1-x^2}\right]$

.(1) $\left[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}\right]$

Now, let $\cos^{-1} \frac{1}{3} = x$. Then, $\cos x = \frac{1}{3} \Rightarrow \sin x = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{2\sqrt{2}}{2}$.

L.H.S. = $\frac{9\pi}{9} - \frac{9}{4} \sin^{-1} \frac{1}{2}$

 $=\frac{9}{4}\left(\frac{\pi}{2}-\sin^{-1}\frac{1}{2}\right)$

 $\therefore x = \sin^{-1} \frac{2\sqrt{2}}{2} \Rightarrow \cos^{-1} \frac{1}{2} = \sin^{-1} \frac{2\sqrt{2}}{2}$

Solve $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$

 $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$

 $\Rightarrow \frac{2\cos x}{1-\cos^2 x} = 2\csc x$

 \therefore L.H.S. = $\frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{2} = \text{R.H.S.}$

Question 13:

Answer

Solve

Answer

 $=\frac{9}{4}\left(\cos^{-1}\frac{1}{2}\right)$

$$\therefore x = \frac{\pi}{4}$$
Question 14:
$$\tan^{-1} \frac{1 - x}{1 + x} = \frac{1}{2} \tan^{-1} x, (x > 0)$$

www.ncerthelp.com

The correct answer is D.
$$\sqrt{1+x^2}$$

 $\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$, then x is equal to Solve

Question 16:

www.ncerthelp.com

$$\therefore y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) \Rightarrow \tan^{-1}x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
$$\therefore \sin\left(\tan^{-1}x\right) = \sin\left(\sin^{-1}\frac{x}{\sqrt{1+x^2}}\right) = \frac{x}{\sqrt{1+x^2}}$$

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

$$1\frac{\pi}{6}$$
15:
$$\left(\tan^{-1}x\right), \ \left|x\right| < 1$$
 is equal to

 $\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad \left[\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \right]$

$$\Rightarrow \frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6}$$

$$\therefore x = \frac{1}{\sqrt{3}}$$
Question 15:

 $\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$

$$\therefore x = \frac{1}{\sqrt{3}}$$
Question 15:
Solve $\sin(\tan^{-1}x)$, $|x| < 1$ is equal to

(A) $\frac{x}{\sqrt{1-x^2}}$ (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$
Answer

$$\tan y = x \Rightarrow \sin y = \frac{x}{\sqrt{1+x^2}}.$$
Let $\tan^{-1}x = y$. Then,

(A)
$$0, \frac{1}{2}$$
 (B) $1, \frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ Answer

$$\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$$

$$\Rightarrow -2\sin^{-1} x = \frac{\pi}{2} - \sin^{-1} (1 - x)$$

$$\Rightarrow -2\sin^{-1} x = \cos^{-1} (1 - x) \qquad \dots (1)$$
Let $\sin^{-1} x = \theta \Rightarrow \sin \theta = x \Rightarrow \cos \theta = \sqrt{1 - x^2}$.

$$\therefore \sin^{-1} x = \cos^{-1} \left(\sqrt{1 - x^2} \right)$$
Therefore, from equation (1), we have

 $\therefore \theta = \cos^{-1}\left(\sqrt{1-x^2}\right)$

Therefore, from equation (1), we n

$$-2\cos^{-1}(\sqrt{1-x^2}) = \cos^{-1}(1-x)$$

$$-2\cos \left(\sqrt{1-x}\right) = \cos \left(1-x\right)$$

Put
$$x = \sin y$$
. Then, we have:

Put
$$x = \sin y$$
. Then, we have:

 \Rightarrow $-2\cos^{-1}(\cos v) = \cos^{-1}(1-\sin v)$

 $\Rightarrow 1 - \sin y = \cos(-2y) = \cos 2y$

 \Rightarrow $-2v = \cos^{-1}(1 - \sin v)$

 $\Rightarrow 1 - \sin \nu = 1 - 2\sin^2 \nu$

 $\Rightarrow 2\sin^2 v - \sin v = 0$

 $\Rightarrow \sin y = 0 \text{ or } \frac{1}{2}$

 $\therefore x = 0 \text{ or } x = \frac{1}{2}$

 $\Rightarrow \sin y (2 \sin y - 1) = 0$

$$(1-x)$$

$$s^{-1}(1-x)$$

$$-2\cos^{-1}\left(\sqrt{1-\sin^2 y}\right) = \cos^{-1}\left(1-\sin y\right)$$

- $x = \frac{1}{2}$ But, when $x = \frac{1}{2}$, it can be observed that:
 - www.ncerthelp.com

L.H.S. =
$$\sin^{-1} \left(1 - \frac{1}{2} \right) - 2 \sin^{-1} \frac{1}{2}$$

= $\sin^{-1} \left(\frac{1}{2} \right) - 2 \sin^{-1} \frac{1}{2}$

$$=-\sin^{-1}\left(\frac{1}{2}\right)^{-2\sin^{-1}\left(\frac{1}{2}\right)}$$
$$=-\sin^{-1}\left(\frac{1}{2}\right)$$
$$=-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text{R.H.S.}$$

Hence, the correct answer is **C**.

$$\therefore x = \frac{1}{2}$$
 is not the solution of the given equation.
Thus, $x = 0$.

Thus, x = 0.

 $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\frac{x-y}{x+y}$ is equal to Solve

(A)
$$\frac{\pi}{2}$$
 (B). $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{-3\pi}{4}$

$$= \tan^{-1} \left[\frac{x(x+y) - y(x-y)}{y(x+y)} \frac{1}{y(x+y) + x(x-y)} \frac{1}{y(x+y) + x(x-y)} \right]$$

$$= \tan^{-1} \left(\frac{x^2 + xy - xy + y^2}{xy + y^2 + x^2 - xy} \right)$$

$$= \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + y^2} \right) = \tan^{-1} 1 = \frac{\pi}{4}$$
Hence, the correct answer is **C**.

 $\tan^{-1}\left(\frac{x}{v}\right) - \tan^{-1}\frac{x-y}{x+y}$

 $= \tan^{-1} \left| \frac{\frac{x}{y} - \frac{x - y}{x + y}}{1 + \left(\frac{x}{y}\right) \left(\frac{x - y}{x + y}\right)} \right|$

 $\left[\tan^{-1} y - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \right]$